Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An adaptive multi-fidelity PC-based ensemble Kalman inversion for inverse problems (1809.08931v1)

Published 21 Sep 2018 in math.NA

Abstract: The ensemble Kalman inversion (EKI), as a derivative-free methodology, has been widely used in the parameter estimation of inverse problems. Unfortunately, its cost may become moderately large for systems described by high dimensional nonlinear PDEs, as EKI requires a relatively large ensemble size to guarantee its performance. In this paper, we propose an adaptive multi-fidelity polynomial chaos (PC) based EKI technique to address this challenge. Our new strategy combines a large number of low-order PC surrogate model evaluations and a small number of high-fidelity forward model evaluations, yielding a multi-fidelity approach. Especially, we present a new approach that adaptively constructs and refines a multi-fidelity PC surrogate during the EKI simulation. Since the forward model evaluations are only required for updating the low-order multi-fidelity PC model, whose number can be much smaller than the total ensemble size of the classic EKI, the entire computational costs are thus significantly reduced. The new algorithm was tested through the two-dimensional time fractional inverse diffusion problems and demonstrated great effectiveness in comparison with PC based EKI and classic EKI.

Summary

We haven't generated a summary for this paper yet.