Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Language Identification with Deep Bottleneck Features (1809.08909v2)

Published 18 Sep 2018 in cs.CL, cs.CV, and cs.SD

Abstract: In this paper we proposed an end-to-end short utterances speech language identification(SLD) approach based on a Long Short Term Memory (LSTM) neural network which is special suitable for SLD application in intelligent vehicles. Features used for LSTM learning are generated by a transfer learning method. Bottle-neck features of a deep neural network (DNN) which are trained for mandarin acoustic-phonetic classification are used for LSTM training. In order to improve the SLD accuracy of short utterances a phase vocoder based time-scale modification(TSM) method is used to reduce and increase speech rated of the test utterance. By splicing the normal, speech rate reduced and increased utterances, we can extend length of test utterances so as to improved improved the performance of the SLD system. The experimental results on AP17-OLR database shows that the proposed methods can improve the performance of SLD, especially on short utterance with 1s and 3s durations.

Citations (4)

Summary

We haven't generated a summary for this paper yet.