Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Microlocal Morse theory of wrapped Fukaya categories (1809.08807v3)

Published 24 Sep 2018 in math.SG

Abstract: The Nadler--Zaslow correspondence famously identifies the finite-dimensional Floer homology groups between Lagrangians in cotangent bundles with the finite-dimensional Hom spaces between corresponding constructible sheaves. We generalize this correspondence to incorporate the infinite-dimensional spaces of morphisms 'at infinity', given on the Floer side by Reeb trajectories (also known as "wrapping") and on the sheaf side by allowing unbounded infinite rank sheaves which are categorically compact. When combined with existing sheaf theoretic computations, our results confirm many new instances of homological mirror symmetry. More precisely, given a real analytic manifold $M$ and a subanalytic isotropic subset $\Lambda$ of its co-sphere bundle $S*M$, we show that the partially wrapped Fukaya category of $T*M$ stopped at $\Lambda$ is equivalent to the category of compact objects in the unbounded derived category of sheaves on $M$ with microsupport inside $\Lambda$. By an embedding trick, we also deduce a sheaf theoretic description of the wrapped Fukaya category of any Weinstein sector admitting a stable polarization.

Citations (95)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.