Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Hochschild cohomology ring of a global quotient orbifold (1809.08715v2)

Published 24 Sep 2018 in math.AG, math.KT, and math.RT

Abstract: We study the cup product on the Hochschild cohomology of the stack quotient [X/G] of a smooth quasi-projective variety X by a finite group G. More specifically, we construct a G-equivariant sheaf of graded algebras on X whose G-invariant global sections recover the associated graded algebra of the Hochschild cohomology of [X/G], under a natural filtration. This sheaf is an algebra over the polyvector fields T{poly}_X on X, and is generated as a T{poly}_X-algebra by the sum of the determinants det(N_{Xg}) of the normal bundles of the fixed loci in X. We employ our understanding of Hochschild cohomology to conclude that the analog of Kontsevich's formality theorem, for the cup product, does not hold for Deligne--Mumford stacks in general. We discuss relationships with orbifold cohomology, extending Ruan's cohomological conjectures. This employs a trivialization of the determinants in the case of a symplectic group action on a symplectic variety X, which requires (for the cup product) a nontrivial normalization missing in previous literature.

Summary

We haven't generated a summary for this paper yet.