Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Encoding two-dimensional range top-k queries (1809.07067v3)

Published 19 Sep 2018 in cs.DS

Abstract: We consider the problem of encoding two-dimensional arrays, whose elements come from a total order, for answering \topk{} queries. The aim is to obtain encodings that use space close to the information-theoretic lower bound, which can be constructed efficiently. For an $m \times n$ array, with $m \le n$, we first propose an encoding for answering 1-sided \topk{} queries, whose query range is restricted to $[1 \dots m][1 \dots a]$, for $1 \le a \le n$. Next, we propose an encoding for answering for the general (4-sided) \topk{} queries that takes $(m\lg{{(k+1)n \choose n}}+2nm(m-1)+o(n))$ bits, which generalizes the \textit{joint Cartesian tree} of Golin et al. [TCS 2016]. Compared with trivial $O(nm\lg{n})$-bit encoding, our encoding takes less space when $m = o(\lg{n})$. In addition to the upper bound results for the encodings, we also give lower bounds on encodings for answering $1$ and $4$-sided \topk{} queries, which show that our upper bound results are almost optimal.

Citations (2)

Summary

We haven't generated a summary for this paper yet.