Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal lower bounds for multiple recurrence (1809.06912v2)

Published 18 Sep 2018 in math.DS and math.CO

Abstract: Let $(X, \mathcal{B},\mu,T)$ be an ergodic measure preserving system, $A \in \mathcal{B}$ and $\epsilon>0$. We study the largeness of sets of the form \begin{equation*} \begin{split} S = \left{ n\in\mathbb{N}\colon\mu(A\cap T{-f_1(n)}A\cap T{-f_2(n)}A\cap\ldots\cap T{-f_k(n)}A)> \mu(A){k+1} - \epsilon \right} \end{split} \end{equation*} for various families ${f_1,\dots,f_k}$ of sequences $f_i\colon \mathbb{N} \to \mathbb{N}$. For $k \leq 3$ and $f_{i}(n)=i f(n)$, we show that $S$ has positive density if $f(n)=q(p_n)$ where $q \in \mathbb{Z}[x]$ satisfies $q(1)$ or $q(-1) =0$ and $p_n$ denotes the $n$-th prime; or when $f$ is a certain Hardy field sequence. If $Tq$ is ergodic for some $q \in \mathbb{N}$, then for all $r \in \mathbb{Z}$, $S$ is syndetic if $f(n) = qn + r$. For $f_{i}(n)=a_{i}n$, where $a_{i}$ are distinct integers, we show that $S$ can be empty for $k\geq 4$, and for $k = 3$ we found an interesting relation between the largeness of $S$ and the abundance of solutions to certain linear equations in sparse sets of integers. We also provide some partial results when the $f_{i}$ are distinct polynomials.

Summary

We haven't generated a summary for this paper yet.