Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

State-Dependent Kernel Selection for Conditional Sampling of Graphs (1809.06758v1)

Published 18 Sep 2018 in stat.ME and stat.CO

Abstract: This paper introduces new efficient algorithms for two problems: sampling conditional on vertex degrees in unweighted graphs, and sampling conditional on vertex strengths in weighted graphs. The algorithms can sample conditional on the presence or absence of an arbitrary number of edges. The resulting conditional distributions provide the basis for exact tests. Existing samplers based on MCMC or sequential importance sampling are generally not scalable; their efficiency degrades in sparse graphs. MCMC methods usually require explicit computation of a Markov basis to navigate the complex state space; this is computationally intensive even for small graphs. We use state-dependent kernel selection to develop new MCMC samplers. These do not require a Markov basis, and are efficient both in sparse and dense graphs. The key idea is to intelligently select a Markov kernel on the basis of the current state of the chain. We apply our methods to testing hypotheses on a real network and contingency table. The algorithms appear orders of magnitude more efficient than existing methods in the test cases considered.

Summary

We haven't generated a summary for this paper yet.