Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EEG-based Subjects Identification based on Biometrics of Imagined Speech using EMD (1809.06697v1)

Published 13 Sep 2018 in q-bio.NC, cs.LG, and eess.SP

Abstract: When brain activity is translated into commands for real applications, the potential for human capacities augmentation is promising. In this paper, EMD is used to decompose EEG signals during Imagined Speech in order to use it as a biometric marker for creating a Biometric Recognition System. For each EEG channel, the most relevant Intrinsic Mode Functions (IMFs) are decided based on the Minkowski distance, and for each IMF 4 features are computed: Instantaneous and Teager energy distribution and Higuchi and Petrosian Fractal Dimension. To test the proposed method, a dataset with 20 subjects who imagined 30 repetitions of 5 words in Spanish, is used. Four classifiers are used for this task - random forest, SVM, naive Bayes, and k-NN - and their performances are compared. The accuracy obtained (up to 0.92 using Linear SVM) after 10-folds cross-validation suggest that the proposed method based on EMD can be valuable for creating EEG-based biometrics of imagined speech for Subjects identification.

Citations (18)

Summary

We haven't generated a summary for this paper yet.