Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence and exactness of exponential Riesz sequences and frames for fractal measures (1809.06541v2)

Published 18 Sep 2018 in math.FA and math.CA

Abstract: We study the construction of exponential frames and Riesz sequences for a class of fractal measures on ${\mathbb R}d$ generated by infinite convolution of discrete measures using the idea of frame towers and Riesz-sequence towers. The exactness and overcompleteness of the constructed exponential frame or Riesz sequence is completely classified in terms of the cardinality at each level of the tower. Using a version of the solution of the Kadison-Singer problem, known as the $R_{\epsilon}$-conjecture, we show that all these measures contain exponential Riesz sequences of infinite cardinality. Furthermore, when the measure is the middle-third Cantor measure, or more generally for self-similar measures with no-overlap condition, there are always exponential Riesz sequences of maximal possible Beurling dimension.

Summary

We haven't generated a summary for this paper yet.