Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Merge Non-Dominated Sorting Algorithm for Many-Objective Optimization (1809.06106v1)

Published 17 Sep 2018 in cs.NE

Abstract: Many Pareto-based multi-objective evolutionary algorithms require to rank the solutions of the population in each iteration according to the dominance principle, what can become a costly operation particularly in the case of dealing with many-objective optimization problems. In this paper, we present a new efficient algorithm for computing the non-dominated sorting procedure, called Merge Non-Dominated Sorting (MNDS), which has a best computational complexity of $\Theta(NlogN)$ and a worst computational complexity of $\Theta(MN2)$. Our approach is based on the computation of the dominance set of each solution by taking advantage of the characteristics of the merge sort algorithm. We compare the MNDS against four well-known techniques that can be considered as the state-of-the-art. The results indicate that the MNDS algorithm outperforms the other techniques in terms of number of comparisons as well as the total running time.

Citations (9)

Summary

We haven't generated a summary for this paper yet.