Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A convex formulation for high-dimensional sparse sliced inverse regression (1809.06024v1)

Published 17 Sep 2018 in stat.ML and cs.LG

Abstract: Sliced inverse regression is a popular tool for sufficient dimension reduction, which replaces covariates with a minimal set of their linear combinations without loss of information on the conditional distribution of the response given the covariates. The estimated linear combinations include all covariates, making results difficult to interpret and perhaps unnecessarily variable, particularly when the number of covariates is large. In this paper, we propose a convex formulation for fitting sparse sliced inverse regression in high dimensions. Our proposal estimates the subspace of the linear combinations of the covariates directly and performs variable selection simultaneously. We solve the resulting convex optimization problem via the linearized alternating direction methods of multiplier algorithm, and establish an upper bound on the subspace distance between the estimated and the true subspaces. Through numerical studies, we show that our proposal is able to identify the correct covariates in the high-dimensional setting.

Citations (31)

Summary

We haven't generated a summary for this paper yet.