Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 434 tok/s Pro
Kimi K2 198 tok/s Pro
2000 character limit reached

Non-uniqueness of delta shocks and contact discontinuities in the multi-dimensional model of Chaplygin gas (1809.05342v1)

Published 14 Sep 2018 in math.AP

Abstract: We study the Riemann problem for the isentropic compressible Euler equations in two space dimensions with the pressure law describing the Chaplygin gas. It is well known that there are Riemann initial data for which the 1D Riemann problem does not have a classical $BV$ solution, instead a $\delta$-shock appears, which can be viewed as a generalized measure-valued solution with a concentration measure in the density component. We prove that in the case of two space dimensions there exists infinitely many bounded admissible weak solutions starting from the same initial data. Moreover, we show the same property also for a subset of initial data for which the classical 1D Riemann solution consists of two contact discontinuities. As a consequence of the latter result we observe that any criterion based on the principle of maximal dissipation of energy will not pick the classical 1D solution as the physical one.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.