Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gaussian Process Classification for Variable Fidelity Data (1809.05143v3)

Published 13 Sep 2018 in cs.LG and stat.ML

Abstract: In this paper we address a classification problem where two sources of labels with different levels of fidelity are available. Our approach is to combine data from both sources by applying a co-kriging schema on latent functions, which allows the model to account item-dependent labeling discrepancy. We provide an extension of Laplace inference for Gaussian process classification, that takes into account multi-fidelity data. We evaluate the proposed method on real and synthetic datasets and show that it is more resistant to different levels of discrepancy between sources than other approaches for data fusion. Our method can provide accuracy/cost trade-off for a number of practical tasks such as crowd-sourced data annotation and feasibility regions construction in engineering design.

Summary

We haven't generated a summary for this paper yet.