Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blind prediction of protein B-factor and flexibility (1809.04334v1)

Published 12 Sep 2018 in q-bio.BM and q-bio.QM

Abstract: Debye-Waller factor, a measure of X-ray attenuation, can be experimentally observed in protein X-ray crystallography. Previous theoretical models have made strong inroads in the analysis of B-factors by linearly fitting protein B-factors from experimental data. However, the blind prediction of B-factors for unknown proteins is an unsolved problem. This work integrates machine learning and advanced graph theory, namely, multiscale weighted colored graphs (MWCGs), to blindly predict B-factors of unknown proteins. MWCGs are local features that measure the intrinsic flexibility due to a protein structure. Global features that connect the B-factors of different proteins, e.g., the resolution of X-ray crystallography, are introduced to enable the cross-protein B-factor predictions. Several machine learning approaches, including ensemble methods and deep learning, are considered in the present work. The proposed method is validated with hundreds of thousands of experimental B-factors. Extensive numerical results indicate that the blind B-factor predictions obtained from the present method are more accurate than the least squares fittings using traditional methods.

Summary

We haven't generated a summary for this paper yet.