Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monocular Object and Plane SLAM in Structured Environments (1809.03415v2)

Published 10 Sep 2018 in cs.RO and cs.CV

Abstract: In this paper, we present a monocular Simultaneous Localization and Mapping (SLAM) algorithm using high-level object and plane landmarks. The built map is denser, more compact and semantic meaningful compared to feature point based SLAM. We first propose a high order graphical model to jointly infer the 3D object and layout planes from single images considering occlusions and semantic constraints. The extracted objects and planes are further optimized with camera poses in a unified SLAM framework. Objects and planes can provide more semantic constraints such as Manhattan plane and object supporting relationships compared to points. Experiments on various public and collected datasets including ICL NUIM and TUM Mono show that our algorithm can improve camera localization accuracy compared to state-of-the-art SLAM especially when there is no loop closure, and also generate dense maps robustly in many structured environments.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shichao Yang (11 papers)
  2. Sebastian Scherer (163 papers)
Citations (82)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com