Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic interpolation for obstacle avoidance on Riemannian manifolds (1809.03168v1)

Published 10 Sep 2018 in math.OC and cs.SY

Abstract: This work is devoted to studying dynamic interpolation for obstacle avoidance. This is a problem that consists of minimizing a suitable energy functional among a set of admissible curves subject to some interpolation conditions. The given energy functional depends on velocity, covariant acceleration and on artificial potential functions used for avoiding obstacles. We derive first-order necessary conditions for optimality in the proposed problem; that is, given interpolation and boundary conditions we find the set of differential equations describing the evolution of a curve that satisfies the prescribed boundary values, interpolates the given points and is an extremal for the energy functional. We study the problem in different settings including a general one on a Riemannian manifold and a more specific one on a Lie group endowed with a left-invariant metric. We also consider a sub-Riemannian problem. We illustrate the results with examples of rigid bodies, both planar and spatial, and underactuated vehicles including a unicycle and an underactuated unmanned vehicle.

Citations (40)

Summary

We haven't generated a summary for this paper yet.