Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Gradient Attack on Network Embedding (1809.02797v2)

Published 8 Sep 2018 in physics.soc-ph and cs.SI

Abstract: Network embedding maps a network into a low-dimensional Euclidean space, and thus facilitate many network analysis tasks, such as node classification, link prediction and community detection etc, by utilizing machine learning methods. In social networks, we may pay special attention to user privacy, and would like to prevent some target nodes from being identified by such network analysis methods in certain cases. Inspired by successful adversarial attack on deep learning models, we propose a framework to generate adversarial networks based on the gradient information in Graph Convolutional Network (GCN). In particular, we extract the gradient of pairwise nodes based on the adversarial network, and select the pair of nodes with maximum absolute gradient to realize the Fast Gradient Attack (FGA) and update the adversarial network. This process is implemented iteratively and terminated until certain condition is satisfied, i.e., the number of modified links reaches certain predefined value. Comprehensive attacks, including unlimited attack, direct attack and indirect attack, are performed on six well-known network embedding methods. The experiments on real-world networks suggest that our proposed FGA behaves better than some baseline methods, i.e., the network embedding can be easily disturbed using FGA by only rewiring few links, achieving state-of-the-art attack performance.

Citations (146)

Summary

We haven't generated a summary for this paper yet.