Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relational Program Synthesis (1809.02283v2)

Published 7 Sep 2018 in cs.PL

Abstract: This paper proposes relational program synthesis, a new problem that concerns synthesizing one or more programs that collectively satisfy a relational specification. As a dual of relational program verification, relational program synthesis is an important problem that has many practical applications, such as automated program inversion and automatic generation of comparators. However, this relational synthesis problem introduces new challenges over its non-relational counterpart due to the combinatorially larger search space. As a first step towards solving this problem, this paper presents a synthesis technique that combines the counterexample-guided inductive synthesis framework with a novel inductive synthesis algorithm that is based on relational version space learning. We have implemented the proposed technique in a framework called Relish, which can be instantiated to different application domains by providing a suitable domain-specific language and the relevant relational specification. We have used the Relish framework to build relational synthesizers to automatically generate string encoders/decoders as well as comparators, and we evaluate our tool on several benchmarks taken from prior work and online forums. Our experimental results show that the proposed technique can solve almost all of these benchmarks and that it significantly outperforms EUSolver, a generic synthesis framework that won the general track of the most recent SyGuS competition.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yuepeng Wang (18 papers)
  2. Xinyu Wang (186 papers)
  3. Isil Dillig (57 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.