Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Equivalence of approximation by convolutional neural networks and fully-connected networks (1809.00973v3)

Published 4 Sep 2018 in math.FA and cs.LG

Abstract: Convolutional neural networks are the most widely used type of neural networks in applications. In mathematical analysis, however, mostly fully-connected networks are studied. In this paper, we establish a connection between both network architectures. Using this connection, we show that all upper and lower bounds concerning approximation rates of {fully-connected} neural networks for functions $f \in \mathcal{C}$ -- for an arbitrary function class $\mathcal{C}$ -- translate to essentially the same bounds concerning approximation rates of convolutional neural networks for functions $f \in {\mathcal{C}{equi}}$, with the class ${\mathcal{C}{equi}}$ consisting of all translation equivariant functions whose first coordinate belongs to $\mathcal{C}$. All presented results consider exclusively the case of convolutional neural networks without any pooling operation and with circular convolutions, i.e., not based on zero-padding.

Citations (76)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.