Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convex optimization using quantum oracles (1809.00643v4)

Published 3 Sep 2018 in quant-ph, cs.DS, and math.OC

Abstract: We study to what extent quantum algorithms can speed up solving convex optimization problems. Following the classical literature we assume access to a convex set via various oracles, and we examine the efficiency of reductions between the different oracles. In particular, we show how a separation oracle can be implemented using $\tilde{O}(1)$ quantum queries to a membership oracle, which is an exponential quantum speed-up over the $\Omega(n)$ membership queries that are needed classically. We show that a quantum computer can very efficiently compute an approximate subgradient of a convex Lipschitz function. Combining this with a simplification of recent classical work of Lee, Sidford, and Vempala gives our efficient separation oracle. This in turn implies, via a known algorithm, that $\tilde{O}(n)$ quantum queries to a membership oracle suffice to implement an optimization oracle (the best known classical upper bound on the number of membership queries is quadratic). We also prove several lower bounds: $\Omega(\sqrt{n})$ quantum separation (or membership) queries are needed for optimization if the algorithm knows an interior point of the convex set, and $\Omega(n)$ quantum separation queries are needed if it does not.

Citations (53)

Summary

We haven't generated a summary for this paper yet.