Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotically Independent U-Statistics in High-Dimensional Testing (1809.00411v4)

Published 2 Sep 2018 in math.ST and stat.TH

Abstract: Many high-dimensional hypothesis tests aim to globally examine marginal or low-dimensional features of a high-dimensional joint distribution, such as testing of mean vectors, covariance matrices and regression coefficients. This paper constructs a family of U-statistics as unbiased estimators of the $\ell_p$-norms of those features. We show that under the null hypothesis, the U-statistics of different finite orders are asymptotically independent and normally distributed. Moreover, they are also asymptotically independent with the maximum-type test statistic, whose limiting distribution is an extreme value distribution. Based on the asymptotic independence property, we propose an adaptive testing procedure which combines $p$-values computed from the U-statistics of different orders. We further establish power analysis results and show that the proposed adaptive procedure maintains high power against various alternatives.

Citations (43)

Summary

We haven't generated a summary for this paper yet.