Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Operation Sequence Model for Explainable Neural Machine Translation (1808.09688v1)

Published 29 Aug 2018 in cs.CL

Abstract: We propose to achieve explainable neural machine translation (NMT) by changing the output representation to explain itself. We present a novel approach to NMT which generates the target sentence by monotonically walking through the source sentence. Word reordering is modeled by operations which allow setting markers in the target sentence and move a target-side write head between those markers. In contrast to many modern neural models, our system emits explicit word alignment information which is often crucial to practical machine translation as it improves explainability. Our technique can outperform a plain text system in terms of BLEU score under the recent Transformer architecture on Japanese-English and Portuguese-English, and is within 0.5 BLEU difference on Spanish-English.

Citations (29)

Summary

We haven't generated a summary for this paper yet.