Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Voice Conversion Based on Cross-Domain Features Using Variational Auto Encoders (1808.09634v1)

Published 29 Aug 2018 in eess.AS, cs.CL, cs.LG, and cs.SD

Abstract: An effective approach to non-parallel voice conversion (VC) is to utilize deep neural networks (DNNs), specifically variational auto encoders (VAEs), to model the latent structure of speech in an unsupervised manner. A previous study has confirmed the ef- fectiveness of VAE using the STRAIGHT spectra for VC. How- ever, VAE using other types of spectral features such as mel- cepstral coefficients (MCCs), which are related to human per- ception and have been widely used in VC, have not been prop- erly investigated. Instead of using one specific type of spectral feature, it is expected that VAE may benefit from using multi- ple types of spectral features simultaneously, thereby improving the capability of VAE for VC. To this end, we propose a novel VAE framework (called cross-domain VAE, CDVAE) for VC. Specifically, the proposed framework utilizes both STRAIGHT spectra and MCCs by explicitly regularizing multiple objectives in order to constrain the behavior of the learned encoder and de- coder. Experimental results demonstrate that the proposed CD- VAE framework outperforms the conventional VAE framework in terms of subjective tests.

Citations (43)

Summary

We haven't generated a summary for this paper yet.