Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-time Pedestrian Detection Approach with an Efficient Data Communication Bandwidth Strategy (1808.09023v3)

Published 27 Aug 2018 in cs.CV

Abstract: Vehicle-to-Pedestrian (V2P) communication can significantly improve pedestrian safety at a signalized intersection. It is unlikely that pedestrians will carry a low latency communication enabled device and activate a pedestrian safety application in their hand-held device all the time. Because of this limitation, multiple traffic cameras at the signalized intersection can be used to accurately detect and locate pedestrians using deep learning and broadcast safety alerts related to pedestrians to warn connected and automated vehicles around a signalized intersection. However, unavailability of high-performance computing infrastructure at the roadside and limited network bandwidth between traffic cameras and the computing infrastructure limits the ability of real-time data streaming and processing for pedestrian detection. In this paper, we develop an edge computing based real-time pedestrian detection strategy combining pedestrian detection algorithm using deep learning and an efficient data communication approach to reduce bandwidth requirements while maintaining a high object detection accuracy. We utilize a lossy compression technique on traffic camera data to determine the tradeoff between the reduction of the communication bandwidth requirements and a defined object detection accuracy. The performance of the pedestrian-detection strategy is measured in terms of pedestrian classification accuracy with varying peak signal-to-noise ratios. The analyses reveal that we detect pedestrians by maintaining a defined detection accuracy with a peak signal-to-noise ratio (PSNR) 43 dB while reducing the communication bandwidth from 9.82 Mbits/sec to 0.31 Mbits/sec, a 31x reduction.

Citations (23)

Summary

We haven't generated a summary for this paper yet.