Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

COFGA: Classification Of Fine-Grained Features In Aerial Images (1808.09001v1)

Published 27 Aug 2018 in cs.CV

Abstract: Classification between thousands of classes in high-resolution images is one of the heavily studied problems in deep learning over the last decade. However, the challenge of fine-grained multi-class classification of objects in aerial images, especially in low resource cases, is still challenging and an active area of research in the literature. Solving this problem can give rise to various applications in the field of scene understanding and classification and re-identification of specific objects from aerial images. In this paper, we provide a description of our dataset - COFGA of multi-class annotated objects in aerial images. We examine the results of existing state-of-the-art models and modified deep neural networks. Finally, we explain in detail the first published competition for solving this task.

Citations (1)

Summary

We haven't generated a summary for this paper yet.