Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameter estimation for Gaussian processes with application to the model with two independent fractional Brownian motions (1808.08417v1)

Published 25 Aug 2018 in math.PR

Abstract: The purpose of the article is twofold. Firstly, we review some recent results on the maximum likelihood estimation in the regression model of the form $X_t = \theta G(t) + B_t$, where $B$ is a Gaussian process, $G(t)$ is a known function, and $\theta$ is an unknown drift parameter. The estimation techniques for the cases of discrete-time and continuous-time observations are presented. As examples, models with fractional Brownian motion, mixed fractional Brownian motion, and sub-fractional Brownian motion are considered. Secondly, we study in detail the model with two independent fractional Brownian motions and apply the general results mentioned above to this model.

Summary

We haven't generated a summary for this paper yet.