Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

Synthetic Patient Generation: A Deep Learning Approach Using Variational Autoencoders (1808.06444v1)

Published 20 Aug 2018 in cs.LG and stat.ML

Abstract: Artificial Intelligence in healthcare is a new and exciting frontier and the possibilities are endless. With deep learning approaches beating human performances in many areas, the logical next step is to attempt their application in the health space. For these and other Machine Learning approaches to produce good results and have their potential realized, the need for, and importance of, large amounts of accurate data is second to none. This is a challenge faced by many industries and more so in the healthcare space. We present an approach of using Variational Autoencoders (VAE's) as an approach to generating more data for training deeper networks, as well as uncovering underlying patterns in diagnoses and the patients suffering from them. By training a VAE, on available data, it was able to learn the latent distribution of the patient features given the diagnosis. It is then possible, after training, to sample from the learnt latent distribution to generate new accurate patient records given the patient diagnosis.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)