Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Bayesian Regression for a Dirichlet Distributed Response using Stan (1808.06399v1)

Published 20 Aug 2018 in stat.ME

Abstract: For an observed response that is composed by a set - or vector - of positive values that sum up to 1, the Dirichlet distribution (Bol'shev, 2018) is a helpful mathematical construction for the quantification of the data-generating mechanics underlying this process. In applications, these response-sets are usually denoted as proportions, or compositions of proportions, and by means of covariates, one wishes to manifest the underlying signal - by changes in the value of these covariates - leading to differently distributed response compositions. This article gives a brief introduction into this class of regression models, and based on a recently developed formulation (Maier, 2014), illustrates the implementation in the Bayesian inference framework Stan.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.