Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strang splitting in combination with rank-$1$ and rank-$r$ lattices for the time-dependent Schrödinger equation (1808.06357v3)

Published 20 Aug 2018 in math.NA and cs.NA

Abstract: We approximate the solution for the time dependent Schr\"odinger equation (TDSE) in two steps. We first use a pseudo-spectral collocation method that uses samples of functions on rank-1 or rank-r lattice points with unitary Fourier transforms. We then get a system of ordinary differential equations in time, which we solve approximately by stepping in time using the Strang splitting method. We prove that the numerical scheme proposed converges quadratically with respect to the time step size, given that the potential is in a Korobov space with the smoothness parameter greater than $9/2$. Particularly, we prove that the required degree of smoothness is independent of the dimension of the problem. We demonstrate our new method by comparing with results using sparse grids from [12], with several numerical examples showing large advantage for our new method and pushing the examples to higher dimensionality. The proposed method has two distinctive features from a numerical perspective: (i) numerical results show the error convergence of time discretization is consistent even for higher-dimensional problems; (ii) by using the rank-$1$ lattice points, the solution can be efficiently computed (and further time stepped) using only $1$-dimensional Fast Fourier Transforms.

Citations (5)

Summary

We haven't generated a summary for this paper yet.