Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast and Accurate, Convolutional Neural Network Based Approach for Object Detection from UAV (1808.05756v2)

Published 16 Aug 2018 in cs.CV

Abstract: Unmanned Aerial Vehicles (UAVs), have intrigued different people from all walks of life, because of their pervasive computing capabilities. UAV equipped with vision techniques, could be leveraged to establish navigation autonomous control for UAV itself. Also, object detection from UAV could be used to broaden the utilization of drone to provide ubiquitous surveillance and monitoring services towards military operation, urban administration and agriculture management. As the data-driven technologies evolved, machine learning algorithm, especially the deep learning approach has been intensively utilized to solve different traditional computer vision research problems. Modern Convolutional Neural Networks based object detectors could be divided into two major categories: one-stage object detector and two-stage object detector. In this study, we utilize some representative CNN based object detectors to execute the computer vision task over Stanford Drone Dataset (SDD). State-of-the-art performance has been achieved in utilizing focal loss dense detector RetinaNet based approach for object detection from UAV in a fast and accurate manner.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xiaoliang Wang (22 papers)
  2. Peng Cheng (229 papers)
  3. Xinchuan Liu (2 papers)
  4. Benedict Uzochukwu (2 papers)
Citations (46)