Papers
Topics
Authors
Recent
2000 character limit reached

On the Brun spectral sequence for topological Hochschild homology

Published 14 Aug 2018 in math.AT | (1808.04586v1)

Abstract: We generalize a spectral sequence of Brun for the computation of topological Hochschild homology. The generalized version computes the $E$-homology of $THH(A;B)$, where $E$ is a ring spectrum, $A$ is a commutative $S$-algebra and $B$ is a connective commutative $A$-algebra. The input of the spectral sequence are the topological Hochschild homology groups of $B$ with coefficients in the $E$-homology groups of $B \wedge_A B$. The mod $p$ and $v_1$ topological Hochschild homology of connective complex $K$-theory has been computed by Ausoni and later again by Rognes, Sagave and Schlichtkrull. We present an alternative, short computation using the generalized Brun spectral sequence.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.