Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FaceOff: Anonymizing Videos in the Operating Rooms (1808.04440v1)

Published 6 Aug 2018 in cs.CV and cs.AI

Abstract: Video capture in the surgical operating room (OR) is increasingly possible and has potential for use with computer assisted interventions (CAI), surgical data science and within smart OR integration. Captured video innately carries sensitive information that should not be completely visible in order to preserve the patient's and the clinical teams' identities. When surgical video streams are stored on a server, the videos must be anonymized prior to storage if taken outside of the hospital. In this article, we describe how a deep learning model, Faster R-CNN, can be used for this purpose and help to anonymize video data captured in the OR. The model detects and blurs faces in an effort to preserve anonymity. After testing an existing face detection trained model, a new dataset tailored to the surgical environment, with faces obstructed by surgical masks and caps, was collected for fine-tuning to achieve higher face-detection rates in the OR. We also propose a temporal regularisation kernel to improve recall rates. The fine-tuned model achieves a face detection recall of 88.05 % and 93.45 % before and after applying temporal-smoothing respectively.

Citations (10)

Summary

We haven't generated a summary for this paper yet.