Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Learning of Sentence Representations Using Sequence Consistency (1808.04217v4)

Published 10 Aug 2018 in cs.CL and cs.AI

Abstract: Computing universal distributed representations of sentences is a fundamental task in natural language processing. We propose ConsSent, a simple yet surprisingly powerful unsupervised method to learn such representations by enforcing consistency constraints on sequences of tokens. We consider two classes of such constraints -- sequences that form a sentence and between two sequences that form a sentence when merged. We learn sentence encoders by training them to distinguish between consistent and inconsistent examples, the latter being generated by randomly perturbing consistent examples in six different ways. Extensive evaluation on several transfer learning and linguistic probing tasks shows improved performance over strong unsupervised and supervised baselines, substantially surpassing them in several cases. Our best results are achieved by training sentence encoders in a multitask setting and by an ensemble of encoders trained on the individual tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Siddhartha Brahma (20 papers)
Citations (8)