Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Adaptive Systems in Organic Computing: Strategies for Self-Improvement (1808.03519v1)

Published 8 Aug 2018 in cs.AI

Abstract: With the intensified use of intelligent things, the demands on the technological systems are increasing permanently. A possible approach to meet the continuously changing challenges is to shift the system integration from design to run-time by using adaptive systems. Diverse adaptivity properties, so-called self-* properties, form the basis of these systems and one of the properties is self-improvement. It describes the ability of a system not only to adapt to a changing environment according to a predefined model, but also the capability to adapt the adaptation logic of the whole system. In this paper, a closer look is taken at the structure of self-adaptive systems. Additionally, the systems' ability to improve themselves during run-time is described from the perspective of Organic Computing. Furthermore, four different strategies for self-improvement are presented, following the taxonomy of self-adaptation suggested by Christian Krupitzer et al.

Citations (1)

Summary

We haven't generated a summary for this paper yet.