Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Complexity of Solving Subtraction Games (1808.03494v1)

Published 10 Aug 2018 in quant-ph, cs.CC, cs.DS, and cs.GT

Abstract: We study algorithms for solving Subtraction games, which sometimes are referred to as one-heap Nim games. We describe a quantum algorithm which is applicable to any game on DAG, and show that its query compexity for solving an arbitrary Subtraction game of $n$ stones is $O(n{3/2}\log n)$. The best known deterministic algorithms for solving such games are based on the dynamic programming approach. We show that this approach is asymptotically optimal and that classical query complexity for solving a Subtraction game is generally $\Theta(n2)$. This paper perhaps is the first explicit "quantum" contribution to algorithmic game theory.

Citations (2)

Summary

We haven't generated a summary for this paper yet.