Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Does Hamiltonian Monte Carlo mix faster than a random walk on multimodal densities? (1808.03230v2)

Published 9 Aug 2018 in math.PR, cs.LG, stat.CO, stat.ME, and stat.ML

Abstract: Hamiltonian Monte Carlo (HMC) is a very popular and generic collection of Markov chain Monte Carlo (MCMC) algorithms. One explanation for the popularity of HMC algorithms is their excellent performance as the dimension $d$ of the target becomes large: under conditions that are satisfied for many common statistical models, optimally-tuned HMC algorithms have a running time that scales like $d{0.25}$. In stark contrast, the running time of the usual Random-Walk Metropolis (RWM) algorithm, optimally tuned, scales like $d$. This superior scaling of the HMC algorithm with dimension is attributed to the fact that it, unlike RWM, incorporates the gradient information in the proposal distribution. In this paper, we investigate a different scaling question: does HMC beat RWM for highly $\textit{multimodal}$ targets? We find that the answer is often $\textit{no}$. We compute the spectral gaps for both the algorithms for a specific class of multimodal target densities, and show that they are identical. The key reason is that, within one mode, the gradient is effectively ignorant about other modes, thus negating the advantage the HMC algorithm enjoys in unimodal targets. We also give heuristic arguments suggesting that the above observation may hold quite generally. Our main tool for answering this question is a novel simple formula for the conductance of HMC using Liouville's theorem. This result allows us to compute the spectral gap of HMC algorithms, for both the classical HMC with isotropic momentum and the recent Riemannian HMC, for multimodal targets.

Citations (30)

Summary

We haven't generated a summary for this paper yet.