Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MCRM: Mother Compact Recurrent Memory (1808.02016v3)

Published 4 Aug 2018 in cs.NE, cs.LG, and stat.ML

Abstract: LSTMs and GRUs are the most common recurrent neural network architectures used to solve temporal sequence problems. The two architectures have differing data flows dealing with a common component called the cell state (also referred to as the memory). We attempt to enhance the memory by presenting a modification that we call the Mother Compact Recurrent Memory (MCRM). MCRMs are a type of a nested LSTM-GRU architecture where the cell state is the GRU hidden state. The concatenation of the forget gate and input gate interactions from the LSTM are considered an input to the GRU cell. Because MCRMs has this type of nesting, MCRMs have a compact memory pattern consisting of neurons that acts explicitly in both long-term and short-term fashions. For some specific tasks, empirical results show that MCRMs outperform previously used architectures.

Citations (1)

Summary

We haven't generated a summary for this paper yet.