Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the number of edges in some graphs (1808.01548v3)

Published 5 Aug 2018 in math.CO

Abstract: In 1975, P. Erd\H{o}s proposed the problem of determining the maximum number $f(n)$ of edges in a graph with $n$ vertices in which any two cycles are of different lengths. The sequence $(c_1,c_2,\cdots,c_n)$ is the cycle length distribution of a graph $G$ of order $n$ where $c_i$ is the number of cycles of length $i$ in $G$. Let $f(a_1,a_2,\cdots, a_n)$ denote the maximum possible number of edges in a graph which satisfies $c_i\leq a_i$ where $a_i$ is a nonnegative integer. In 1991, Shi posed the problem of determining $f(a_1,a_2,\cdots,a_n)$ which extended the problem due to Erd\H{o}s, it is clear that $f(n)=f(1,1,\cdots,1)$. Let $g(n,m)=f(a_1,a_2,\cdots,a_n),$ $a_i=1$ for all $i/m$ be integer, $a_i=0$ for all $i/m$ be not integer. It is clear that $f(n)=g(n,1)$. We prove that $\liminf_{n \to \infty} {f(n)-n \over \sqrt n} \geq \sqrt {2 + \frac{40}{99}},$ which is better than the previous bounds $\sqrt 2$ (Shi, 1988), $\sqrt {2 + \frac{7654}{19071}}$ (Lai, 2017). We show that $\liminf_{n \rightarrow \infty} {g(n,m)-n\over \sqrt \frac{n}{m}} > \sqrt {2.444},$ for all even integers $m$. We make the following conjecture: $\liminf_{n \to \infty} {f(n)-n \over \sqrt n} > \sqrt {2.444}.$

Summary

We haven't generated a summary for this paper yet.