Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On energy dissipation theory and numerical stability for time-fractional phase field equations (1808.01471v2)

Published 4 Aug 2018 in math.NA and cs.NA

Abstract: For the time-fractional phase field models, the corresponding energy dissipation law has not been settled on both the continuous level and the discrete level. In this work, we shall address this open issue. More precisely, we prove for the first time that the time-fractional phase field models indeed admit an energy dissipation law of an integral type. In the discrete level, we propose a class of finite difference schemes that can inherit the theoretical energy stability. Our discussion covers the time-fractional gradient systems, including the time-fractional Allen-Cahn equation, the time-fractional Cahn-Hilliard equation, and the time-fractional molecular beam epitaxy models. Numerical examples are presented to confirm the theoretical results. Moreover, a numerical study of the coarsening rate of random initial states depending on the fractional parameter $\alpha$ reveals that there are several coarsening stages for both time-fractional Cahn-Hilliard equation and time-fractional molecular beam epitaxy model, while there exists a $-\alpha/3$ power law coarsening stage.

Citations (114)

Summary

We haven't generated a summary for this paper yet.