Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Unbiased Asymptotic Normality of Quantile Regression with Fixed Effects (1807.11863v2)

Published 31 Jul 2018 in econ.EM, math.ST, and stat.TH

Abstract: Nonlinear panel data models with fixed individual effects provide an important set of tools for describing microeconometric data. In a large class of such models (including probit, proportional hazard and quantile regression to name just a few) it is impossible to difference out individual effects, and inference is usually justified in a `large n large T' asymptotic framework. However, there is a considerable gap in the type of assumptions that are currently imposed in models with smooth score functions (such as probit, and proportional hazard) and quantile regression. In the present paper we show that this gap can be bridged and establish asymptotic unbiased normality for quantile regression panels under conditions on n,T that are very close to what is typically assumed in standard nonlinear panels. Our results considerably improve upon existing theory and show that quantile regression is applicable to the same type of panel data (in terms of n,T) as other commonly used nonlinear panel data models. Thorough numerical experiments confirm our theoretical findings.

Summary

We haven't generated a summary for this paper yet.