Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-bin Trainable Linear Unit for Fast Image Restoration Networks (1807.11389v1)

Published 30 Jul 2018 in cs.CV

Abstract: Tremendous advances in image restoration tasks such as denoising and super-resolution have been achieved using neural networks. Such approaches generally employ very deep architectures, large number of parameters, large receptive fields and high nonlinear modeling capacity. In order to obtain efficient and fast image restoration networks one should improve upon the above mentioned requirements. In this paper we propose a novel activation function, the multi-bin trainable linear unit (MTLU), for increasing the nonlinear modeling capacity together with lighter and shallower networks. We validate the proposed fast image restoration networks for image denoising (FDnet) and super-resolution (FSRnet) on standard benchmarks. We achieve large improvements in both memory and runtime over current state-of-the-art for comparable or better PSNR accuracies.

Citations (6)

Summary

We haven't generated a summary for this paper yet.