Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The IVP for a nonlocal perturbation of the Benjamin-Ono equation in classical and weighted Sobolev spaces (1807.10674v1)

Published 27 Jul 2018 in math.AP

Abstract: We prove that the initial value problem associated to a nonlocal perturbation of the Benjamin-Ono equation is locally and globally well-posed in Sobolev spaces $Hs(\mathbb{R})$ for any $s>-3/2$ and we establish that our result is sharp in the sense that the flow map of this equation fails to be $C2$ in $Hs(\mathbb{R})$ for $s<-3/2$. Finally, we study persistence properties of the solution flow in the weighted Sobolev spaces $Z_{s,r}=Hs(\mathbb{R})\cap L2(|x|{2r}\,dx)$ for $s\geq r >0$. We also prove some unique continuation properties of the solution flow in these spaces.

Summary

We haven't generated a summary for this paper yet.