Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Range-constrained Learning and Its Application for Medical Image Grading (1807.10571v1)

Published 11 Jul 2018 in cs.CV, cs.LG, and stat.ML

Abstract: Sparse learning has been shown to be effective in solving many real-world problems. Finding sparse representations is a fundamentally important topic in many fields of science including signal processing, computer vision, genome study and medical imaging. One important issue in applying sparse representation is to find the basis to represent the data,especially in computer vision and medical imaging where the data is not necessary incoherent. In medical imaging, clinicians often grade the severity or measure the risk score of a disease based on images. This process is referred to as medical image grading. Manual grading of the disease severity or risk score is often used. However, it is tedious, subjective and expensive. Sparse learning has been used for automatic grading of medical images for different diseases. In the grading, we usually begin with one step to find a sparse representation of the testing image using a set of reference images or atoms from the dictionary. Then in the second step, the selected atoms are used as references to compute the grades of the testing images. Since the two steps are conducted sequentially, the objective function in the first step is not necessarily optimized for the second step. In this paper, we propose a novel sparse range-constrained learning(SRCL)algorithm for medical image grading.Different from most of existing sparse learning algorithms, SRCL integrates the objective of finding a sparse representation and that of grading the image into one function. It aims to find a sparse representation of the testing image based on atoms that are most similar in both the data or feature representation and the medical grading scores. We apply the new proposed SRCL to CDR computation and cataract grading. Experimental results show that the proposed method is able to improve the accuracy in cup-to-disc ratio computation and cataract grading.

Citations (14)

Summary

We haven't generated a summary for this paper yet.