Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Body Area Networks Using Kinematics and Biosignals (1807.09723v3)

Published 25 Jul 2018 in cs.NI

Abstract: The increasing penetration of wearable and implantable devices necessitates energy-efficient and robust ways of connecting them to each other and to the cloud. However, the wireless channel around the human body poses unique challenges such as a high and variable path-loss caused by frequent changes in the relative node positions as well as the surrounding environment. An adaptive wireless body area network (WBAN) scheme is presented that reconfigures the network by learning from body kinematics and biosignals. It has very low overhead since these signals are already captured by the WBAN sensor nodes to support their basic functionality. Periodic channel fluctuations in activities like walking can be exploited by reusing accelerometer data and scheduling packet transmissions at optimal times. Network states can be predicted based on changes in observed biosignals to reconfigure the network parameters in real time. A realistic body channel emulator that evaluates the path-loss for everyday human activities was developed to assess the efficacy of the proposed techniques. Simulation results show up to 41% improvement in packet delivery ratio (PDR) and up to 27% reduction in power consumption by intelligent scheduling at lower transmission power levels. Moreover, experimental results on a custom test-bed demonstrate an average PDR increase of 20% and 18% when using our adaptive EMG- and heart-rate-based transmission power control methods, respectively. The channel emulator and simulation code is made publicly available at https://github.com/a-moin/wban-pathloss.

Summary

We haven't generated a summary for this paper yet.