Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention Mechanisms for Object Recognition with Event-Based Cameras (1807.09480v2)

Published 25 Jul 2018 in cs.CV

Abstract: Event-based cameras are neuromorphic sensors capable of efficiently encoding visual information in the form of sparse sequences of events. Being biologically inspired, they are commonly used to exploit some of the computational and power consumption benefits of biological vision. In this paper we focus on a specific feature of vision: visual attention. We propose two attentive models for event based vision: an algorithm that tracks events activity within the field of view to locate regions of interest and a fully-differentiable attention procedure based on DRAW neural model. We highlight the strengths and weaknesses of the proposed methods on four datasets, the Shifted N-MNIST, Shifted MNIST-DVS, CIFAR10-DVS and N-Caltech101 collections, using the Phased LSTM recognition network as a baseline reference model obtaining improvements in terms of both translation and scale invariance.

Citations (42)

Summary

We haven't generated a summary for this paper yet.