Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distinctive-attribute Extraction for Image Captioning (1807.09434v1)

Published 25 Jul 2018 in cs.CV and cs.CL

Abstract: Image captioning, an open research issue, has been evolved with the progress of deep neural networks. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are employed to compute image features and generate natural language descriptions in the research. In previous works, a caption involving semantic description can be generated by applying additional information into the RNNs. In this approach, we propose a distinctive-attribute extraction (DaE) which explicitly encourages significant meanings to generate an accurate caption describing the overall meaning of the image with their unique situation. Specifically, the captions of training images are analyzed by term frequency-inverse document frequency (TF-IDF), and the analyzed semantic information is trained to extract distinctive-attributes for inferring captions. The proposed scheme is evaluated on a challenge data, and it improves an objective performance while describing images in more detail.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Boeun Kim (4 papers)
  2. Young Han Lee (4 papers)
  3. Hyedong Jung (2 papers)
  4. Choongsang Cho (5 papers)
Citations (6)