Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
122 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Unsupervised Learning of Latent Physical Properties Using Perception-Prediction Networks (1807.09244v2)

Published 24 Jul 2018 in cs.LG, cs.AI, cs.CV, and stat.ML

Abstract: We propose a framework for the completely unsupervised learning of latent object properties from their interactions: the perception-prediction network (PPN). Consisting of a perception module that extracts representations of latent object properties and a prediction module that uses those extracted properties to simulate system dynamics, the PPN can be trained in an end-to-end fashion purely from samples of object dynamics. The representations of latent object properties learned by PPNs not only are sufficient to accurately simulate the dynamics of systems comprised of previously unseen objects, but also can be translated directly into human-interpretable properties (e.g., mass, coefficient of restitution) in an entirely unsupervised manner. Crucially, PPNs also generalize to novel scenarios: their gradient-based training can be applied to many dynamical systems and their graph-based structure functions over systems comprised of different numbers of objects. Our results demonstrate the efficacy of graph-based neural architectures in object-centric inference and prediction tasks, and our model has the potential to discover relevant object properties in systems that are not yet well understood.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.