Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convolutional Neural Networks Analyzed via Inverse Problem Theory and Sparse Representations (1807.07998v2)

Published 20 Jul 2018 in cs.LG and stat.ML

Abstract: Inverse problems in imaging such as denoising, deblurring, superresolution (SR) have been addressed for many decades. In recent years, convolutional neural networks (CNNs) have been widely used for many inverse problem areas. Although their indisputable success, CNNs are not mathematically validated as to how and what they learn. In this paper, we prove that during training, CNN elements solve for inverse problems which are optimum solutions stored as CNN neuron filters. We discuss the necessity of mutual coherence between CNN layer elements in order for a network to converge to the optimum solution. We prove that required mutual coherence can be provided by the usage of residual learning and skip connections. We have set rules over training sets and depth of networks for better convergence, i.e. performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.