Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed local approximation algorithms for maximum matching in graphs and hypergraphs (1807.07645v7)

Published 19 Jul 2018 in cs.DS

Abstract: We describe approximation algorithms in Linial's classic LOCAL model of distributed computing to find maximum-weight matchings in a hypergraph of rank $r$. Our main result is a deterministic algorithm to generate a matching which is an $O(r)$-approximation to the maximum weight matching, running in $\tilde O(r \log \Delta + \log2 \Delta + \log* n)$ rounds. (Here, the $\tilde O()$ notations hides $\text{polyloglog } \Delta$ and $\text{polylog } r$ factors). This is based on a number of new derandomization techniques extending methods of Ghaffari, Harris & Kuhn (2017). As a main application, we obtain nearly-optimal algorithms for the long-studied problem of maximum-weight graph matching. Specifically, we get a $(1+\epsilon)$ approximation algorithm using $\tilde O(\log \Delta / \epsilon3 + \text{polylog}(1/\epsilon, \log \log n))$ randomized time and $\tilde O(\log2 \Delta / \epsilon4 + \log*n / \epsilon)$ deterministic time. The second application is a faster algorithm for hypergraph maximal matching, a versatile subroutine introduced in Ghaffari et al. (2017) for a variety of local graph algorithms. This gives an algorithm for $(2 \Delta - 1)$-edge-list coloring in $\tilde O(\log2 \Delta \log n)$ rounds deterministically or $\tilde O( (\log \log n)3 )$ rounds randomly. Another consequence (with additional optimizations) is an algorithm which generates an edge-orientation with out-degree at most $\lceil (1+\epsilon) \lambda \rceil$ for a graph of arboricity $\lambda$; for fixed $\epsilon$ this runs in $\tilde O(\log6 n)$ rounds deterministically or $\tilde O(\log3 n )$ rounds randomly.

Citations (41)

Summary

We haven't generated a summary for this paper yet.