Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse space-time models: Concentration Inequalities and Lasso (1807.07615v3)

Published 19 Jul 2018 in math.ST and stat.TH

Abstract: Inspired by Kalikow-type decompositions, we introduce a new stochastic model of infinite neuronal networks, for which we establish sharp oracle inequalities for Lasso methods and restricted eigenvalue properties for the associated Gram matrix with high probability. These results hold even if the network is only partially observed. The main argument rely on the fact that concentration inequalities can easily be derived whenever the transition probabilities of the underlying process admit a sparse space-time representation.

Summary

We haven't generated a summary for this paper yet.